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whoami

● Technical IT-sec background

● Currently in Information Assurance

– When you're sure it does what it's specified to ...

… how sure are you “it doesn't do anything else”?



  

Motivation

“Security will not get better until tools 
for practical exploration of the attack 

surface are made available.”

Joshua Wright – willhackforsushi.com



  

Motivation

● Explore USB attack surface

… of devices!
– Mobile Devices

– “Secure” USB Drives

– “PinPad” Card Readers

– and more...



  

Intro to USB

● Host-controlled “bus”
– Initiator / Responder  -  “Host” / “Function”

– IN / OUT
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Hub

Function

Function



  

String

Intro to USB

● Devices carry “descriptors”
– Hosts “enumerate” them

– Configurations, Interfaces, Endpoints

Configuration
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Endpoint

Interface

StringString



  

Intro to USB

● Device Classes
– Indicated in Device descriptor …

… or in Interface descriptors

Device Classes

01h Audio

02h CDC

03h HID

05h
...

Phyical
...

CDC Sub Classes

01h Direct Line

02h Abstract

03h Telephone

04h
...

Multi-Channel
...

CDC Interface Protocols

01h ITU-T V.250

02h PCCA-101

03h PCCA-101 + Annex O

04h
...

GSM 7.07
...



  

Intro to USB

● Transfer types
– Control

– Bulk

– “Interrupt”

– Isochronous



  

Intro to USB

● Transfer types
– Control

● Endpoint 0 (EP0), “default” endpoint

Field Size Description

bmRequestType 8 bits Direction, Type, Recipient

bRequest 8 bits Specific request value

wValue 16 bits Request specific parameter

wIndex 16 bits Request specific parameter

wLength 16 bits Bytes to transfer (if any)

Standard Device Requests

00h GET_STATUS

01h CLEAR_FEATURE

03h SET_FEATURE

05h SET_ADDRESS

06h GET_DESCRIPTOR

07h
...

SET_DESCRIPTOR
...



  

Intro to USB

● Transfer types
– Bulk

● Asynchronous (“bursty”)
● Use available bandwidh (“laggy”)
● 2 endpoints (IN/OUT) make a “Pipe”



  

Intro to USB

● Transfer types
– Control

– Bulk

– “Interrupt”

– Isochronous



  

Fuzzing USB Hosts

● Darrin Barrall, David Dewey (2005)

● Moritz Jodeit, Martin Johns  (2009)

● Rafael Dominguez Vega (2009)

● Tobias Müller (2010)

● Travis Goodspeed's Facedancer



  

Fuzzing USB Devices

● Prior work

– Pod2g, posixninja in 2010

– Andy Davis @ BHUSA 2011

● Facedancer20

● libusb!



  

Fuzzing with libusb

● libusb
– Library for developing userland drivers

– Works on Linux, Windows, MacOS

– Nice introduction by Peter Stuge @ 27C3

● Limitations
– Not expecting some “invalid” input

● Tends to crash instead of error out

– Linux kernel performs sanity checks



  

Building a simple fuzzer

● PyUSB – python interface to libusb

● Let's target Control Transfers

● Simple iterative loops around ctrl_transfer()

Demo Time!



  

Building a simple fuzzer



  

Building a simple fuzzer

● Adding some target control
– Monitoring

● Simple: ctrl_transfer(GET_STATUS)
● Better: use a class-specific request

– Resuming
● Simple: device.reset() to recover device
● Better: use external hub for power control



  

Building a simple fuzzer



  

Building a simple fuzzer



  

Extending our reach

● Reach more complex code!
● Device Classes

– Audio, CDC, HID, Image, Printer, Mass Storage, 
Hub, Smart Card, Video, Wireless Controller, DFU, 
Vendor Specific

http://www.usb.org/developers/defined_class/

http://www.usb.org/developers/devclass_docs/ 



  

First attempt: Peach

● Very easy to add pyUSB “Publisher”

● Data modelling and test cases in XML
– Very cumbersome to work with state

● Target control framwork: “Agents”
– Not built for controlling local devices



  

Second attempt: Scapy

● Scapy for data modelling

– Abstracts data as “Layers” of “Packets”

– Keeps everything in python!

– Easy use of python code for “fixups”

● Easy reuse of code with Facedancer!

– Travis Goodspeed, Ryan Speers

– http://rmspeers.com/archives/252



  

Demo Time!



  

Helpful tools

● Total Phase Beagle USB
– http://www.totalphase.com/protocols/usb/

● Travis Goodspeed's Facedancer
– http://goodfet.sourceforge.net/



  

Get the code

https://github.com/ollseg/usb-device-fuzzing 

Will gladly accept pull requests... 



  

Examples of bugs found



  

First bug found

● Atmel AT91SAM7 example USB code
– Prevalent in devices using Atmel MCUs

● Off-by-one on string descriptor index
– ctrl_transfer(0x80, 6, 3<<8 | i+1, 0, len)



  



  

Bugs in Nokia phones

● Random crashes while fuzzing
● Seemed related to “large” Control Transfers
● Looks like a stack buffer overwrite
● Threw together a 5-line python PoC

DEMO TIME!



  

Bugs in USB-Sticks

SLIDE REDACTED



  

Exploiting a USB-stick

SLIDE REDACTED



  

Future work

● Support more protocols

● Reaching deeper into targets

● https://wiki.mozilla.org/WebUSB/ 

● Travis Goodspeed's Facedancer!



  

Thank You!

Olle Segerdahl

olle@nxs.se

https://github.com/ollseg/usb-device-fuzzing

Please remember to fill out the feedback forms!
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