

Fuzzing the USB in your devices
or “How to root your USB-stick”

Olle Segerdahl

olle@nxs.se

whoami

● Technical IT-sec background

● Currently in Information Assurance

– When you're sure it does what it's specified to ...

… how sure are you “it doesn't do anything else”?

Motivation

“Security will not get better until tools
for practical exploration of the attack

surface are made available.”

Joshua Wright – willhackforsushi.com

Motivation

● Explore USB attack surface

… of devices!
– Mobile Devices

– “Secure” USB Drives

– “PinPad” Card Readers

– and more...

Intro to USB

● Host-controlled “bus”
– Initiator / Responder - “Host” / “Function”

– IN / OUT

Host

Function

Hub

Function

Function

String

Intro to USB

● Devices carry “descriptors”
– Hosts “enumerate” them

– Configurations, Interfaces, Endpoints

Configuration

Device

Configuration

Interface

Endpoint

Endpoint

Interface

StringString

Intro to USB

● Device Classes
– Indicated in Device descriptor …

… or in Interface descriptors

Device Classes

01h Audio

02h CDC

03h HID

05h
...

Phyical
...

CDC Sub Classes

01h Direct Line

02h Abstract

03h Telephone

04h
...

Multi-Channel
...

CDC Interface Protocols

01h ITU-T V.250

02h PCCA-101

03h PCCA-101 + Annex O

04h
...

GSM 7.07
...

Intro to USB

● Transfer types
– Control

– Bulk

– “Interrupt”

– Isochronous

Intro to USB

● Transfer types
– Control

● Endpoint 0 (EP0), “default” endpoint

Field Size Description

bmRequestType 8 bits Direction, Type, Recipient

bRequest 8 bits Specific request value

wValue 16 bits Request specific parameter

wIndex 16 bits Request specific parameter

wLength 16 bits Bytes to transfer (if any)

Standard Device Requests

00h GET_STATUS

01h CLEAR_FEATURE

03h SET_FEATURE

05h SET_ADDRESS

06h GET_DESCRIPTOR

07h
...

SET_DESCRIPTOR
...

Intro to USB

● Transfer types
– Bulk

● Asynchronous (“bursty”)
● Use available bandwidh (“laggy”)
● 2 endpoints (IN/OUT) make a “Pipe”

Intro to USB

● Transfer types
– Control

– Bulk

– “Interrupt”

– Isochronous

Fuzzing USB Hosts

● Darrin Barrall, David Dewey (2005)

● Moritz Jodeit, Martin Johns (2009)

● Rafael Dominguez Vega (2009)

● Tobias Müller (2010)

● Travis Goodspeed's Facedancer

Fuzzing USB Devices

● Prior work

– Pod2g, posixninja in 2010

– Andy Davis @ BHUSA 2011

● Facedancer20

● libusb!

Fuzzing with libusb

● libusb
– Library for developing userland drivers

– Works on Linux, Windows, MacOS

– Nice introduction by Peter Stuge @ 27C3

● Limitations
– Not expecting some “invalid” input

● Tends to crash instead of error out

– Linux kernel performs sanity checks

Building a simple fuzzer

● PyUSB – python interface to libusb

● Let's target Control Transfers

● Simple iterative loops around ctrl_transfer()

Demo Time!

Building a simple fuzzer

Building a simple fuzzer

● Adding some target control
– Monitoring

● Simple: ctrl_transfer(GET_STATUS)
● Better: use a class-specific request

– Resuming
● Simple: device.reset() to recover device
● Better: use external hub for power control

Building a simple fuzzer

Building a simple fuzzer

Extending our reach

● Reach more complex code!
● Device Classes

– Audio, CDC, HID, Image, Printer, Mass Storage,
Hub, Smart Card, Video, Wireless Controller, DFU,
Vendor Specific

http://www.usb.org/developers/defined_class/

http://www.usb.org/developers/devclass_docs/

First attempt: Peach

● Very easy to add pyUSB “Publisher”

● Data modelling and test cases in XML
– Very cumbersome to work with state

● Target control framwork: “Agents”
– Not built for controlling local devices

Second attempt: Scapy

● Scapy for data modelling

– Abstracts data as “Layers” of “Packets”

– Keeps everything in python!

– Easy use of python code for “fixups”

● Easy reuse of code with Facedancer!

– Travis Goodspeed, Ryan Speers

– http://rmspeers.com/archives/252

Demo Time!

Helpful tools

● Total Phase Beagle USB
– http://www.totalphase.com/protocols/usb/

● Travis Goodspeed's Facedancer
– http://goodfet.sourceforge.net/

Get the code

https://github.com/ollseg/usb-device-fuzzing

Will gladly accept pull requests...

Examples of bugs found

First bug found

● Atmel AT91SAM7 example USB code
– Prevalent in devices using Atmel MCUs

● Off-by-one on string descriptor index
– ctrl_transfer(0x80, 6, 3<<8 | i+1, 0, len)

Bugs in Nokia phones

● Random crashes while fuzzing
● Seemed related to “large” Control Transfers
● Looks like a stack buffer overwrite
● Threw together a 5-line python PoC

DEMO TIME!

Bugs in USB-Sticks

SLIDE REDACTED

Exploiting a USB-stick

SLIDE REDACTED

Future work

● Support more protocols

● Reaching deeper into targets

● https://wiki.mozilla.org/WebUSB/

● Travis Goodspeed's Facedancer!

Thank You!

Olle Segerdahl

olle@nxs.se

https://github.com/ollseg/usb-device-fuzzing

Please remember to fill out the feedback forms!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

